Search results for "Sonic hedgehog"
showing 10 items of 22 documents
Zebrafish Fins as a Model System for Skeletal Human Studies
2007
Recent studies on the morphogenesis of the fins ofDanio rerio(zebrafish) during development and regeneration suggest that a number of inductive signals involved in the process are similar to some of those that affect bone and cartilage differentiation in mammals and humans. Akimenko et al. (2002) has shown that bone morphogenetic protein-2b (BMP2b) is involved in the induction of dermal bone differentiation during fin regeneration. Many other groups have also shown that molecules from the transforming growth factor-beta superfamily (TGFβ), including BMP2, are effective in promoting chondrogenesis and osteogenesisin vivoin higher vertebrates, including humans. In the present study, we review…
Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells.
2008
Neural stem cells that continue to produce neurons are retained in the adult hippocampal dentate gyrus. The mechanisms by which embryonic neural progenitors expand and transform into postnatal neural stem cells, an essential process for the continual production of neurons throughout life, remain unknown. We found that radial astrocytes, the postnatal progenitors in the dentate gyrus, failed to develop after embryonic ablation of ciliary genes or Smoothened (Smo), an essential component for Sonic hedgehog (Shh) signaling. Postnatal dentate neurogenesis failed in these mutant mice, and the dentate gyrus became severely hypotrophic. In contrast, expression of a constitutively active Smo (SmoM2…
High expression of GLI1 is associated with better survival in advanced SCLC
2020
Aim Aberrant Sonic hedgehog (Shh) pathway signaling has been described in small cell lung cancer (SCLC), as well discrepancies, when analyzing expression of pathway components in SCLC cell lines vs tumor biopsies. Shh key component GLI1 was evaluated in advanced SCLC and data correlated with patient survival. Materials and methods GLI1 expression was analyzed by quantitative real-time polymerase chain reaction in pre-treatment fresh frozen tumor biopsies of 12 advanced SCLC patients and mRNA level of GLI1 was compared in short-term vs long-term survivor's samples (stratified by median survival, independent samples t-test). Results Expression of GLI1 mRNA was significantly higher in long-ter…
Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors.
2007
Optic nerve (ON) oligodendrocyte precursors (OPCs) are generated under the influence of the Sonic hedgehog (Shh) in the preoptic area from where they migrate to colonise the entire nerve. The molecular events that control this migration are still poorly understood. Recent studies suggested that Shh is often used by the same cell population to control different processes, including cell proliferation and migration, raising the possibility that Shh could contribute to these aspects of OPC development. In support of this idea, we show here that Shh induces the proliferation of OPCs derived from embryonic mouse ON explants and acts as a chemoattractant for their migration. In ovo injections of …
Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories
2017
Multiciliated ependymal (E1) cells line the brain ventricles and are essential for brain homeostasis. We previously identified in the lateral ventricles a rare ependymal subpopulation (E2) with only two cilia and unique basal bodies. Here we show that E2 cells form a distinct biciliated epithelium extending along the ventral third into the fourth ventricle. In the third ventricle floor, apical profiles with only primary cilia define an additional uniciliated (E3) epithelium. E2 and E3 cells' ultrastructure, marker expression and basal processes indicate that they correspond to subtypes of tanycytes. Using sonic hedgehog lineage tracing, we show that the third and fourth ventricle E2 and E3 …
Sonic Hedgehog-Mediated Synergistic Effects Guiding Angiogenesis and Osteogenesis
2012
Sonic hedgehog (Shh) is a morphogen controlling the skeletal and vascular development in the embryo but is also reactivated during adult repair processes. Thus, this molecule holds great therapeutic potential for biotechnological and biomedical approaches aiming to enhance tissue regeneration or to replace damaged tissues. According to present knowledge, Shh signaling controls the expression of several families of growth factors involved in neovascularization and vessel maturation and acts upstream of the most prominent angiogenic growth factor, vascular endothelial growth factor. In this context, a very interesting feature of Shh is that it controls both angiogenic activity and vessel stab…
TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human
2021
TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockou…
The hedgehog receptor patched is involved in cholesterol transport.
2011
International audience; BACKGROUND: Sonic hedgehog (Shh) signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened. METHODOLOGY/PRINCIPAL FINDINGS: Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement …
In vitro and in vivo arterial differentiation of human multipotent adult progenitor cells
2006
Many stem cell types have been shown to differentiate into endothelial cells (ECs); however, their specification to arterial or venous endothelium remains unexplored. We tested whether a specific arterial or venous EC fate could be induced in human multipotent adult progenitor cells (hMAPCs) and AC133(+) cells (hAC133(+)). In vitro, in the presence of VEGF(165), hAC133(+) cells only adopted a venous and microvascular EC phenotype, while hMAPCs differentiated into both arterial and venous ECs, possibly because hMAPCs expressed significantly more sonic hedgehog (Shh) and its receptors as well as Notch 1 and 3 receptors and some of their ligands. Accordingly, blocking either of those pathways …
TCTN3 Mutations Cause Mohr-Majewski Syndrome
2012
Orofaciodigital syndromes (OFDSs) consist of a group of heterogeneous disorders characterized by abnormalities in the oral cavity, face, and digits and associated phenotypic abnormalities that lead to the delineation of 13 OFDS subtypes. Here, by a combined approach of homozygozity mapping and exome ciliary sequencing, we identified truncating TCTN3 mutations as the cause of an extreme form of OFD associated with bone dysplasia, tibial defect, cystic kidneys, and brain anomalies (OFD IV, Mohr-Majewski syndrome). Analysis of 184 individuals with various ciliopathies (OFD, Meckel, Joubert, and short rib polydactyly syndromes) led us to identify four additional truncating TCTN3 mutations in un…